
An Extension to PDDL: Actions with Embedded Code Calls

Okhtay Ilghami
University of Maryland at College Park

okhtay@cs.umd.edu

J. William Murdock
IBM Watson Research Center
murdockj@watson.ibm.com

Abstract
In most existing planning systems, plan generation and
plan execution are two entirely separate phases. This
fact has had a huge effect on the way PDDL has been
developed so far: It is assumed that the two aforemen-
tioned phases are separable. In this paper, we inves-
tigate the characteristics of the domains in which this
separation is impossible. We also propose extensions to
PDDL, both syntactically and semantically, which will
make PDDL capable of describing such domains.

Introduction
In traditional planning systems, plan generation and plan ex-
ecution are separated. This simplifying separation is based
on the usually unrealistic assumption of perfect knowledge.
In reality, however, there can be two reasons for the lack of
such knowledge: The state of the world may not be fully
known, or actions may have unpredictable effects. In either
case, the planner may need to execute some of the steps of
the generated plan to observe more about the state of the
world and/or the preconditions and effects of the actions in
those steps. The consequence of executing actions while
generating plans is that the state of the world is changing
and these changes are irreversible. For example, consider a
robot trying to get out of a maze of unknown configuration.
The robot may initially move around to determine where the
walls are, and then start planning using that information.

PDDL (Fox & Long 2001b), a purely descriptive and
platform-independent language, has recently become the de
facto standard for defining planning problems and evaluating
plans. Perfect knowledge is assumed in the existing PDDL
specification. In this paper, we propose a way to extend
PDDL so that it can be used to describe domains where the
planner does not necessarily have perfect knowledge, and
it may execute code calls within the actions to gain knowl-
edge that may be useful in generating later steps of the plan.
In the next section, we discuss the syntactic and semantic
aspects of such an extension, and how it affects the notion
of a valid plan. We then conclude the paper by sections on
related work and future directions.

Adding Actions with Code Calls to PDDL
In this section, we explain how our extension to PDDL is
formulated, and how it affects the semantics of a domain and

a plan. We propose three extensions to the PDDL syntax:
i) Two new possible requirements for a PDDL

domain: :code-call-actions to declare that
a domain contains actions with code calls, and
:code-call-durative-actions to declare that
a domain contains durative actions with code calls.

ii) A new kind of instantaneous action, denoted by the
keyword :code-call-action: These actions look ex-
actly like ordinary PDDL actions, except for one extra con-
struct, denoted by :code in their definition. This construct
consists of a predicate analogous to a function call, and a list
of typed returned values. The names of these variables must
start with #. These variables can be used in the effects of
the action, as any other variable.

iii) A new kind of durative action, denoted by the key-
word :code-call-durative-action: These actions
look exactly like PDDL durative actions, except for one ex-
tra construct, denoted by :code in their definition. This
construct can be temporally annotated, and it consists of a
predicate analogous to a function call, and a list of typed re-
turned values. The names of these variables must start with
#, and they can be used in the effects of the action.

In this paper we discuss only instantaneous actions with
embedded code calls. It is straightforward to generalize our
discussions both syntactically and semantically to include
durative actions with embedded code calls. From now on we
use the term action to refer only to instantaneous actions.

Consider the k-armed bandit problem (Berry & Fristodt
1985; Kaelbling, Littman, & Moore 1996). In this problem,
there are k gambling machines and a robot. When the robot
pulls the arm of the ith machine, the machine pays off ei-
ther a dollar with the constant probability pi or nothing with
the probability 1–pi. The robot is allowed to have a fixed
number of pulls, h, and pis are not known to the robot in
advance. The goal is to maximize the total pay off. Since
the robot does not know the pis, it cannot simply plan and
execute separately. The robot can gain information (i.e., get
a better approximation of pi) by pulling the arm of the ith
machine. This is an irreversible action, since it decreases
the number of allowed pulls by one. In Figure 1, we show
how this problem can be defined in our proposed extension
of PDDL. Action pull uses a code call do-pull to pull a
lever and see what happens. This code call is defined in the
line tagged :code. The code call returns a single numeric



(define (domain K-armed-bandit)
(:requirements :fluents :adl
:code-call-actions)
(:types lever number)
(:functions (pulls) (cash))
(:code-call-action pull
:parameters (?l - lever)
:precondition (> (pulls) 0)
:code ((do-pull ?l) (#pay - number))
:effect (and (decrease (pulls) 1)

(increase (cash) #pay))))

Figure 1: Encoding the K-armed bandit problem

value. This value is used to instantiate variable #pay. Al-
though this code call returns only one numeric value, code
calls can return several return values with arbitrary types.

In Figure 2 we show how to define the problem of a robot
trying to get out of a maze. In this problem, the robot has
an initial position and wants to get to a final position. It has
four possible actions to move north, south, east or west. The
robot cannot plan in advance and execute later since it does
not know where the walls are located. The only way the
robot has to figure out if there is a wall to its north is to try
to move north. The return value #ret indicates whether the
robot has moved north or has been stopped by a wall.

Actions with embedded code-calls are useful to describe
actions with these three characteristics: First, the outcome
of an action is not known in advance. This can happen for
several different reasons, for example imperfect knowledge
about the current state of the world. Since the effects of
the action are not known fully in advance, it cannot be de-
fined as a classical planning action. Second, although the
outcome of the action is not known in advance, the planner
may speculate that executing it may help to reach the goal
(either directly or indirectly via the information gained by
executing the action and then observing the results). Third,
executing the action changes the state of the world.

Embedded code calls are particularly useful for sensing
actions (i.e., actions that give the planner some information
about the outside world). In real world, sensing actions can
be performed by some external agent. For example, the plan-
ner may control a robot that can measure the temperature,
navigate the outside world, etc. We define an oracle to be
an abstraction of this external agent in our framework. Any-
time the planner may wish to actually execute something,
it does so by sending a message to the oracle. We assume
that the oracle executes the action and returns the results of
doing so back to the planner. In our proposed extension,
each planning domain is coupled with an oracle O, which is
responsible for processing code calls.

PDDL is a purely descriptive and implementation-
independent language. Our code call syntax preserves these
traits; our syntax is a general format for planners to commu-
nicate with oracles (i.e., the external agents). A code call is
a general form of a function call. It is a predicate with two
elements. The first element is analogous to a function call
(function name followed by its arguments). The second ele-
ment is a list analogous to the return values of the function

(define (domain robot-and-maze)
(:requirements :fluents :adl
:code-call-actions)
(:types number)
(:functions (x) (y))
(:code-call-action north
:parameters () :precondition ()
:code ((move (x) (+ (y) 1))

(#ret - number))
:effect (when (= #ret 1)

(increase (y) 1)))
(:code-call-action south
:parameters () :precondition ()
:code ((move (x) (- (y) 1))

(#ret - number))
:effect (when (= #ret 1)

(decrease (y) 1)))
(:code-call-action east
:parameters () :precondition ()
:code ((move (+ (x) 1) (y))

(#ret - number))
:effect (when (= #ret 1)

(increase (x) 1)))
(:code-call-action west
:parameters () :precondition ()
:code ((move (- (x) 1) (y))

(#ret - number))
:effect (when (= #ret 1)

(decrease (x) 1))))

Figure 2: Encoding the robot and maze problem

call. We assume whenever a planner decides to put an action
with an embedded code call in a plan, the appropriate code
call is executed, and the oracle instantiates the variables in
the return value list. This instantiation is an abstraction of
what happens in the real world: The planning system asks
an outside agent for some information, and then continues
planning using the information provided by that agent. The
effects of asking the external agent to do so can be men-
tioned in the effects part of the action.

The details of how the actual oracle is implemented is out-
side the scope of PDDL. A Java implementation of the oracle
may translate the code call to a member function of an ob-
ject, while a Lisp implementation may translate the code call
to a Lisp expression. From the point of view of someone us-
ing PDDL to define a domain, the underlying structure and
implementation of the attached oracle must be transparent.

In our proposed extension, whenever an action with an
embedded code call is used in a plan, the return values of
the code call must be listed in the generated plan, in the same
order they are mentioned in the domain definition, after the
action. For example, if the robot uses the action north in
the problem defined in Figure 2 in order to try to go north
and it fails, the corresponding action listed in the plan will
look like (north)[0], and if the move is successful it will
look like (north)[1] rather than simply (north).

Whenever there are actions with embedded code calls
listed in a planning domain, satisfaction of the precondi-



tions and achieving all the goals are not the only measures
of validity of a plan. Since the planner cannot backtrack on
certain actions, once it decides to invoke them using the cor-
responding code calls to the oracle it must include them in
the generated plan. Therefore, the validity of a plan is de-
fined with respect to the oracle O in the planning domain: A
valid plan must include all the actions with embedded code
calls corresponding to the code calls it made to the oracle
and the return values it got, in the same order, in addition to
the traditional conditions for validity.

Related Work

One approach to operating in domains where the starting
state is not completely known or there is uncertainty in the
effects of some actions is to interleave reasoning about what
actions to execute with the actual execution. For example,
reinforcement learning techniques (Watkins & Dayan 1992;
Kaelbling, Littman, & Moore 1996) select actions using a
simple numerical policy and incrementally learn improved
policies based on the rewards obtained from performing
actions. Agent centered search techniques (Korf 1990;
Koenig 2001) also interleave execution and learning; unlike
reinforcement learning, these techniques also perform some
planning/search. Reflection using functional process models
(Stroulia & Goel 1995; Murdock & Goel 2003) also inter-
leaves reasoning and action, using a variety of planning and
learning algorithms. We feel that our proposed mechanism
for code calls is potentially useful for all of these methods.

There are also a variety of approaches that deal with in-
complete knowledge and uncertain actions without inter-
leaving reasoning and execution. For example, SGP (Weld,
Anderson, & Smith 1998) performs contingency planning
(i.e., it produces plans that include sensing actions and re-
strictions on which actions are performed depending on the
results of those sensing actions). Similarly, CGP (Smith
& Weld 1998) performs conformant planning (i.e., it pro-
duces plans that accomplish the goal regardless of the out-
come of any actions). In general, approaches that handle
incomplete knowledge and uncertain effects without inter-
leaving reasoning and acting have significant disadvantages.
For example, contingency plans can be very large and time-
consuming to construct, and conformant plans frequently do
not exist or have low quality. However, in some domains
these disadvantages are outweighed by the benefits of not
having to execute any actions until all planning is complete.

Code calls are not essential for planning systems that do
not interleave planning and acting. However, even for those
planning systems, it may be useful to integrate information
needed for planning with information needed for execution.
Such an integration can be useful for executing plans after
planning is complete. The ability to execute plans is not im-
portant for traditional planners, but is important for many
real-world applications of planning (e.g., web services, ro-
botics, interactive agents). To the extent that PDDL can be
valuable for serving as a common domain language for these
sorts of systems, the addition of a mechanism for code calls
seems productive.

Future Directions
This paper is meant to be a first step toward extending PDDL
to handle situations in which plan generation and plan exe-
cution cannot be separated. There are still many unanswered
questions and interesting topics for future research:

Although oracles are well-defined abstract entities in the-
ory, there are issues to be addressed while implementing
them in practice. Some of the questions that should be an-
swered are: What are the effects of different programming
paradigms, such as structured programming, object-oriented
programming, and functional programming on the process
of implementing an oracle? Do these different paradigms,
in practice, affect the planning process too? What are the
conceptual and practical side-effects of the assumption that
there is an oracle attached to each planning domain?

Another interesting topic is the characteristics that an
actual planning system needs in order to be able to han-
dle actions with embedded code calls. Does our proposed
PDDL extension have any unexpected consequences when
employed in such a system? If so, are there revisions that
can address these consequences?

Another question to be answered is how to enhance the
framework we provided here to support other extensions
proposed for PDDL. For example, are there any conceptual
or practical problems in adding actions with embedded code
calls to, for example, PDDL+ (Fox & Long 2001a)?

References
Berry, D. A., and Fristodt, B. 1985. Bandit Problems:
Sequential Allocation of Experiments. Chapman and Hall.
Fox, M., and Long, D. 2001a. PDDL+ level 5: An ex-
tension to PDDL2.1 for modelling planning domains with
continuous time-dependent effects. Technical report, Uni-
versity of Durham, UK.
Fox, M., and Long, D. 2001b. PDDL2.1: An extension to
PDDL for modelling time and metric resources. Technical
report, University of Durham, UK.
Kaelbling, L. P.; Littman, M. L.; and Moore, A. P. 1996.
Reinforcement learning: A survey. Journal of Artificial
Intelligence Research 4:237–285.
Koenig, S. 2001. Agent-centered search. Artificial Intelli-
gence Magazine 22(4):109–131.
Korf, R. E. 1990. Real-time heuristic search. Artificial
Intelligence 42(2–3):189–211.
Murdock, J. W., and Goel, A. K. 2003. Localizing planning
with functional process models. In Proceedings of the 13th
Int’l Conference on Automated Planning and Scheduling.
Smith, D. E., and Weld, D. S. 1998. Conformant graph-
plan. In Proceedings of the Fifteenth National Conference
on Artificial Intelligence, 889–896. AAAI Press.
Stroulia, E., and Goel, A. K. 1995. Functional representa-
tion and reasoning in reflective systems. Journal of Applied
Intelligence 9(1):101–124.
Watkins, C. J. C. H., and Dayan, P. 1992. Technical note:
Q-learning. Machine Learning 8(3).
Weld, D. S.; Anderson, C. R.; and Smith, D. E. 1998.
Extending graphplan to handle uncertainty and sensing ac-
tions. In Proceedings of the Fifteenth National Conference
on Artificial Intelligence, 897–904. AAAI Press.


